
IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified
Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6315 63

Analysis of Algorithms for Implementing AI for

Game “Tak”
Rajkumar pagey

1
, Snehal Martiwar

2
, Palak Khokle

3
, Laxmi Nishad

4
, Priya kakde

5
, Rajesh Nasare

6

Department of Computer Science, RGCER, Nagpur University, Maharashtra
1-6

Abstract: "TAK" is a conceptual technique two player game, which has as of late picked up ubiquity in the gaming

group because of its beginning in a Fantasy Novel and because of its Kickstarter crusade. It is a Zero-Sum, Perfect-

Information game. A zero-whole game is a scientific portrayal of a circumstance in which every member's pick up (or

misfortune) of utility is precisely adjusted by the misfortunes (or increases) of the utility of the other member. In the

event that every player, when settling on any choice, is superbly educated of the considerable number of occasions that

have beforehand happened, it is known as an immaculate data game. Because of these properties, we can actualize

essential AI calculations, as Minimax and Alpha-beta look based calculations for "TAK".

"TAK" Community is consistently developing and dissimilar to chess there hasn't been a great deal of consideration

given to "TAK" AI. A similar investigation of AI Algorithms will help future "TAK" AI designers to make an AI

program all the more proficiently.

Keyword: Abstract strategy, board game, perfect information, TAK, zero-sum.

1.INTRODUCTION-

Since the advent of computers, researchers have tried to

make artificial intelligence that can play games [3]. The

initial research was focused on Chess. In 1996, Garry

Kasparov, the best human player, of that time, lost one

game to the computer Deep Blue but won the match,

consisting of six games. Nowadays, chess programs are

way stronger than the chess grandmasters.
The game-play of “TAK” involves Grid Movement and

Route Building Mechanisms. It has some properties, most

notably threat detection, which make “TAK” hard for

computers [2]. We are implementing and performing a

comparative study of various AI algorithms for “TAK”.

Our aim is to find the pros and cons of all the algorithms

and derive an optimized algorithm designed specifically

for “TAK”. In this project we want to graphically map the

performance of all algorithms and compare it with the

performance of the optimized algorithm.

TAK is a relatively new game, published in 2016 by

Patrick Rothfuss and James Ernest. TAK is an abstract

strategy game inspired by Chess and Go.

Some programs for TAK are available but as far as we

know, no one has done a research on the game properties

of Tak and the algorithms appropriate for TAK. TAK has

a complex design as it is a 3d game in contrast to the 2d

design of Chess.

2. ARTIFICIAL INTELLIGENCE IN 2-AGENT

GAME

Two Agent games are class of board games where two

rivals play on the other hand. There is no real way to

realize what the other player will do, so we approach the

issue by picking a move, perceiving how the rival reacts,

and utilizing that data to pick the following move.

2.1. MiniMax Algorithm

The goal of MiniMax Algorithm is to find best possible

move by looking ahead and evaluating each of the possible

moves. One player is designated MAX and other MIN [2].

We assume that every possible move can be evaluated and

given a numerical value. If the move favours MAX, the

value is positive while move favouring MIN have negative

value. To find the best move, we create tree of all of the

possible solutions according to the following structures

[1]:

-The root is MAX node.

-All MAX nodes have MIN nodes as children and all MIN

nodes have MAX children.

To make arrangement tree each piece is inspected and

another hub is made for every conceivable move. At the

point when the majority of the pieces have been analyzed,

center movements to another hub that has not been

finished. This procedure proceeds until the tree comes to a

pre-indicated profundity. At the point when the tree is

finished, we have to decide the most ideal move by

utilizing assessment work. We accept that MIN will

dependably make the most ideal move so we can't just

discover the way from the leaf with most elevated an

incentive back to root. To locate the best move, the

qualities at the leaves are utilized reinforcement the tree.

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified
Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6315 64

Every min hub gets the estimation of its littlest tyke and

every MAX hub gets the estimation of its biggest

youngster. On the off chance that we proceed until we

achieve the root, the offspring of root with most elevated

esteem is the best move.

The MiniMax procedure is very straight-forward and

correct, but it still has its drawbacks [4]. Depending on the

type of game being solved, the branching factor may be

very high, resulting in very large tree. In addition, the time

to generate tree is O(n) and the time to backup tree is also

O(n). Fortunately, there are ways to correct these

limitations, like Alpha-Beta Pruning [3].

2.2. Alpha-Beta Pruning

Alpha-Beta Pruning is method of generating solution trees

that “prunes” unnecessary branches from the tree[4]. In the

MiniMax procedure, the tree generation and evaluation

steps are separate. By combining these two steps the

search can be stopped at nodes that cannot increase overall

value of position. In order to terminate the search an

ALPHA and a BETA values are maintained. ALPHA

serves as an upper bound for the values of relevant MIN

nodes and BETA serves as lower bound for relevant MAX

nodes[1]. The search starts at the root and generates

children that all get evaluated. The ALPHA and BETA

values allow us to discontinue searching in the following

cases [2]:

-A MIN node with a BETA value less than or equal to

ALPHA value of any MAX ancestors. This node will pass

its BETA value up as its backed-up value.

-A MAX node with an ALPHA value greater than or equal

to BETA value of any of its MIN node ancestors. This

node will contain ALPHA value up as its backed-up value.

The ALPHA and BETA qualities are refreshed amid the

hunt, with every MAX hub having as APLHA the greatest

current went down estimation of its MIN successors. The

BETA estimation of every MIN hub is the base went down

estimation of its Max successors.

The most ideal case for Alpha-Beta Pruning would have

the successors of every MAX hub requested from most

noteworthy to slightest, and the successors of every MIN

hub requested from minimum to most noteworthy. In this

about outlandish circumstance the requesting augments the

quantity of remove that happens. It has been demonstrated

that in the best case, the quantity of hubs at profundity D

utilizing Alpha-Beta Pruning is about the same as the

number at profundity D/2 without pruning.

Any technique for seeking that depends on a hard limit for

looking has drawbacks. It is conceivable that Max could

have a win that is characterized underneath the pursuit

skyline. MIN might have the capacity to delay the win

almost inconclusively. With a specific end goal to keep

this alleged "skyline impact", many ventures will just end

if the assessment estimation of the present position is very

little not quite the same as estimation of past position.

2.3. Complexity Table

Sr.

No

Name of

Algorithm

Time

Complexity

Space

Complexity

1 Mini-Max O(b^m) O(m)

2 Alpha Beta

pruning

O(n^m/2)

3. SYSTEM ARCHITECTURE

Figure1. System Architecture

Board representation- Board representation is a back end

of “TAK” engine which controls how it keeps track of

board and the rules of the game.

Move generation- It generates tree of all the possible

moves .It checks that moves are valid or invalid and also

check for winning move.

Data-It is Database that stores all moves that are generated

by

 1. Self Learning

 2. Official Moves

 Search- One among the various algorithms such as

Minimax, Alpha-Beta pruning is used to select the move.

1.Minimax-

 It is used to minimize the possible loss in a worst

case (maximum loss) scenario [3].

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified
Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6315 65

2.Alpha-Beta Pruning -

It optimizes the Minimax algorithm and decreases the

node of search tree generated by the Minimax algorithm

[5].

4. MODULES

4.1. Module 1-Board Representation

This module is 5*5 dimension board, an array of stack

internally represented from 0 to 24. Every single cell is a

stack. This game goes 3-dimensional. There are 3 stones:

flat stone, wall stone and cap stone. Stones can be laid flat

or stood on end. When played flat, they are called “flat

stones.” In this orientation, other stones can be stacked on

them. If they are stood on end, they are called “standing

stones” or “walls.” Nothing can be stacked atop a standing

stone, but these do not count as part of a player’s road.

Contingent upon the measure of the amusement, players

may likewise have capstones, which can come in

numerous improving shapes. Capstones fill in as both a

Flat stone and a wall, and can likewise straighten standing

stones.

Figure2. Board Representation

 Bitmap representation

Move Notation

Take 5 stones from square b4 and move them right

dropping 2 stones, 1 stone, then 2 stones as you come to

each square.

(5b4>212)

At the beginning of a game of TAK, you start by placing

pieces on the board. There are 3 piece types: Flat Stones,

Standing Stones, and Capstones. These are called the stone

identifiers and are represented by an F, S, and C

throughout the notation. When a stone or stack of stones is

being moved on the TAK board, the direction of the move

is indicated by the direction identifiers. The four possible

move directions are represented by the symbols < > + -.

The < and > identifiers represent movement from player

1's perspective, < moving to the left, and > moving to the

right.

The + and - identifiers represent movement up and down

ranks - moves toward the 1 rank, and + moves the opposite

direction, away from the 1 rank. It helps to think of these

as simple mathematical operators, so that + indicates

"adding" or moving up in rank, and - indicates

"subtraction" or moving down in rank.

 Rules

1. First turn

On every player's first turn, they should put one of their

rival's pieces on any vacant space on the board. The piece

must be a flat stone of their rival's colour. Play then

continues ordinarily with players controlling their own

particular pieces.

Players decide haphazardly who begins the main

diversion, and substitute the primary move for future

games. In aggressive play, white plays first.

2. Each turn

After the first turn, players may make the choice during

their turn to either place a stone or move stones under their

control. There is no option to pass a turn.

3. Placement

During their turn, players may place one stone from their

reserve onto an empty spot on the board. There are three

stone types that may be placed:

Flat stone: Normal stones played flat. Flat stones can be

stacked upon, and they count as part of a road.

Standing stone: Normal stones played on their edge.

Nothing can be stacked upon a standing stone, but they do

not count as part of a road. Also it is commonly called a

“wall”.

Capstone: The most powerful piece, as they count

towards a road and cannot be stacked upon. The capstone

has the ability to move by itself onto a standing stone and

flatten the standing stone into a flat stone. An opponent’s

standing stones and a player's own standing stones can be

flattened in this manner.

An opponent’s standing stones and a player's own standing

stones can be flattened in this manner.

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified
Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6315 66

4. Movement

A player may move a single piece or a stack of pieces they

control. The stone on top of a stack determines which

player has control of that entire stack. All stones move in a

straight line on the board. There is no diagonal movement,

and all stones must proceed forward across the board.

Moving stones is the only way to make stacks. As a stack

moves, the player has the option of breaking the stack,

covering any existing flat stones along the way. Each

space must have one or more stones placed on each space

as it moves, but a player has the option to leave zero or

more pieces on the starting space. There is no height limit

for stacks, but all stacks must be below the carry limit set

by the board size in order to leave no stones on the starting

space. For example, if the stack was on a 5x5, the carry

limit of a stack is 5.

Standing stones and capstones cannot have any stone stack

on top of it. Any move that would place a stone atop a

standing stone or capstone is not legal. The only exception

to this is when a capstone moves by itself onto a standing

stone, flattening it. A capstone may make a longer move

with a taller stack to flatten a standing stone, but it must be

the only piece that moves onto the standing stone.

5. Additional Rules

Carry Limit: There is no upper limit on the height of the

stack. However, there is a limit to the number of pieces

you can move off that stack, also called “Carry limit” or

“Hand Size” which is a number equal to the width of the

board. So in 5*5 board the largest number of pieces that

you can carry is 5.

Insurmountable Pieces: Neither a capstone nor a standing

stone may have any piece stacked on top of it. This piece

can be placed and moved normally, but can’t be stacked

upon. Therefore it’s not legal to make a move that would

place a flat stone a top either of this stone.

Flattening Stone: The capstone can move onto any

standing stone, flattening it. A standing stone can only be

flattened by the capstone by itself, not by the taller stack

with the capstone on top.

6. End of Game

The primary goal of Tak is to build a road from one

opposite end of the board to the other. Only flat stones and

capstones can contribute to a road, while standing stones

do not. As soon as the road is built, the player who built it

wins. This is called a "road win". Roads do not have to be

in a straight line, but stones can only connect when they

are adjacent to one another. Stones cannot connect

diagonally.

If a player makes a move that results in a winning road for

both players, the active player wins.

If a road is not built by either player, a player can also win

by controlling the most spaces with flat stones on the

board. The game will end when a player places their last

piece, or when all spaces on the board are covered. The

player with the most flat stones wins. Standing stones and

capstones do not count. Stones captured by other pieces

also do not count, only the flat stone on top.

4.2 Module 2-Move Generation

This module contains two sub-modules: Valid moves and

checking winning move.

1. Valid moves- This module checks the limitations and

permits just substantial moves like placement and

movement of pieces.

2. Checking winning move- Each time the piece is moved,

it is checked whether it is a last winning move or not. In

the event that it is not, the game will be proceeded with

else the winning message with player name will be

pronounced.

4.3 Module 3-Move Selection

This module includes selection of the move to be played

after the opponent’s move. It has two sub-module viz.

Random and through algorithms.

1. Random- Here moves are selected at random from

DATA which does not assure winning the game.

2.Through algorithms- Here moves are selected by

comparing moves generated by MiniMax and Alpha beta

Algorithms on the basis of both time and space

complexity.

5. CONCLUSION

Some programs for TAK are available but as far as we

know, no one has done a research on the game properties

of TAK and the algorithms appropriate for TAK so we

have studied various algorithms and successfully

implemented TAK using MiniMax algorithm. In future,

modifications would be done using Alpha-Beta pruning.

6. REFERENCES

[1] Ahmed A. Elnaggar, Mostafa Abdel Aziem, Mahmoud Gadallah and
Hesham El-Deeb :”A Comparative Study of Game Tree Searching

Methods”. International journal of advanced computer science and

applications, valume 5 no.5 (2014)

[2] Avneet Pannu: “Artificial Intelligence and its Application in Different

Areas”. :Inernational journal of engineering and innovative

technology(IJEIT) volume 4, issue 10(2015)

[3] Ronald L Rivest: “Game Tree Searching by Min/Max”, labouratry of

computer science, MIT, Cambridge (1995)

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified
Vol. 6, Issue 3, March 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6315 67

[4] Jonathan Schaeffer and Aske Plaat: “An Analysis of Alpha-Beta
Pruning”, Carnegie Mellon University.

[5] Ashraf M.Abdelbar: “Alpha-Beta Pruning and Althofer’s Pathology-
Free Negamax Algorithm”: Department of computer science and

Engineering,American university in Cairo Egypt(2012)

[6] BarneyPell: “METAGAME A new Challenge for Games and
Learning”: The third computer Olympiad Ellias

Horwood,UK(1992).

[7] Steven Balensiefer and Bill Grenzer: “Artificial Intelligence for
Checkers”: University of Notre Dame (2003)

[8] Michiel van de Steeg, Madalina M. Drugan, Marco Wiering,”

Temporal Difference Learning for the Game Tic-Tac-Toe 3D:
Applying Structure to Neural networks”, 2015 IEEE Symposium

Series on Computational Intelligence.

[9] Yue Fu and Tianyou Chai” Online Solution of Two-Player Zero-Sum
Games

for Continuous-Time Nonlinear Systems With Completely Unknown

Dynamics”, IEEE Transactions On Neural Networks And Learning

Systems, Vol. 27, No. 12, December 2016.

[10] Tzung-Pei Hong Ke-Yuan Huang Wen-Yang Lin, Department of

Information Management I-Shou University Kaohsiung, 84008,
Taiwan, R.O.C. “A Genetic Minimax Game-Playing Strategy”.

	Move Notation
	First turn
	Each turn
	Placement
	Movement

